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AC alternative current HTS high temperature storage

AEC automotive electronic council MC molding compound

C capacitance NT new technology

COTS commercial off the shelf OCM original component 
manufacturer

CPTC chip polymer tantalum capacitors QA quality assurance

DF dissipation factor RT room temperature

ESR equivalent series  resistance S&Q screening and qualification

FPGA field-programmable gate array SCD source control drawing

HALT highly accelerated life testing WGT Weibull grading test
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Abstract
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This presentation analyses quality assurance
approaches used by automotive industry and using
polymer tantalum capacitors as an example, reviews
possible ways of COTS insertion in space systems.
Specifics of polymer tantalum capacitors in comparison
with traditionally used MnO2 tantalum capacitors are
discussed.



Outline

 Significance of COTS and automotive industry 
components for space applications.

 What are polymer tantalum capacitors?
 Specifics of CPTCs as compared to MnO2 capacitors.

 How to assure reliability for parts with degrading 
parameters?  (ESR degradation in CPTCs)

 Anomalies in behavior of CPTCs.
 How to mitigate risks of using CPTCs for space?
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Processes of AEC-Q Parts Insertion
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 Are automotive parts COTS components?
 COTS = non-MIL?    or   COTS = non-SCD?
 Automotive parts = parts compliant with AEC-Q?

 Two approaches for COTS insertion:
1. Reliability of COTS is inferior to MIL parts, and to qualify for space 

extensive testing per the existing requirements are necessary.
• The major concern is cost and time of qualification rather than 

technical issues.
2. COTS are NT devices.

• New mechanisms might require new testing techniques.
• Existing procedures for S&Q have to be evaluated and adjusted.

 “COTS as NT” approach requires understanding of new 
degradation mechanisms, specific reliability issues, and 
development of adequate S&Q procedures.

 The consistency of COTS quality still remains a problem.



Components for Space are Coming from 
the COTS World
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 Future cars will be sensors and 
computers on wheels.

 The cost of cars will be mostly due
to electronics.

 Automotive components is the 
fastest growing market, ~10%/year.
(→ Current shortage of components; OCMs are running at full capacity.)

 Requirements for automotive 
components are comparable to 
MIL and these parts are the first 
choice for selection for space.

 Temp from -40 ºC to +165 ºC
 Vibration 0-2000Hz
 Acceleration up to 50g
 Life time 10-15 years (mostly non-operational);

self-driving cars: 1-2 years intensive operation

A. Aal, Volkswagen, 
IRPS’17

http://green-electronic-
tutorial.blogspot.com/20
18/04/.html



What Components are Used in Cars?
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 B. Knoell, AEC chair: there is a need to use an appropriate 
mixture of qualification methodologies:

●Stress Test per AEC-Q Specs.  ●Step-stress testing. ● Application-Specific tests.
●Physics-of-Failure approaches. ●Sequential Stress Tests. ●Board Level Reliability.

 A. Aal, Volkswagen: reliability issues should be resolved by 
working together with components’ manufacturers.
 AEC-Q is only one aspect of the total quality management system.
 Detailed analysis of QA of manufacturing process.
 30-50% of failures were due to material/process changes (notification process).
 Multi-mode stresses, rather than operation hours kill lifetime.
 Assembly affects parameters of thin dielectric ICs.



Using AEC-Q Components for Space
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 Automotive industry does not use AEC-Q parts without 
substantial additional testing and analysis working with 
OCMs.

 Car manufacturers have significant leverage, but 
require high reliability for low price.

 Space community might not have a similar leverage, 
but we do not have cost as a priority. 

 We can benefit from AEC-Q by using compliant part as 
a baseline and developing a knowledge-based system 
for parts’ selection, S&Q.



Why CPTCs?
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 Major benefits: 
 Better volumetric efficiency (smaller case sizes); 
 Higher operating voltages (up to 125V);
 Lower ESR (milliohm range);
 A relatively safe failure mode (no ignition).
 CPTCs are less likely to fail short circuit and are more likely to pass life testing 

per MIL-PRF-55365 compared to MnO2 COTS capacitors.

 Major drawbacks:  
 Effect of environments: both, excessive and insufficient amount of moisture 

might be detrimental; vacuum can be a benefit or a hazard.
 The core element of S&Q for MnO2 capacitors, WGT, is not applicable.
 ESR might degrade with time at high temperatures (HTS testing for QA).
 New phenomena: anomalous transients.

 Substantial efforts have been made to demonstrate compliance 
of CPTCs with AEC-Q200. 
 Currently: Tstorage up to 150ºC and 85ºC/85% RH/1000hr biased.

Breakdown 
in MnO2 

capacitors



What are CPTCs?
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 No significant differences in design except for cathode materials.

Lead 
frame

MnO2

MnO2

Ta

Lead frame

carbon

PEDOT:PSS

Ag paint

polymer

Ta2O5

Nardes et.al 
2008



Specific of CPTCs: ESR Degradation
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 Contrary to MnO2, CPTCs might degrade substantially during HTS.
 Can compliance to AEC-Q200 guarantee end-of-life ESR values?
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Modeling of ESR Degradation
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 Simulations allow for the end-of-life predictions.
 More complex models might be necessary for lots having 

different degradation inception times.
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Mechanism of ESR Degradation
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ESR degradation is due to thermo-
oxidative processes in conductive 
polymers → better stability in vacuum.
Contrary to MnO2 capacitors, cracks in CPTCs are more likely to 

cause ESR failures. 
Quality of packaging is critical for reduction of ESR degradation.  
Parts manufactured to AEC-Q200 have a better packaging control.

CPTCs after HTS
Discoloration of MC indicates the pass 

of O2 causing decomposition.
Oxygen penetrates along the lead 

frame-MC interface.
Parts with less decomposition around 

Ta slug have less degradation.
Cracks accelerate ESR degradation.

crack

Decomposition of MC



Specific of CPTCs: Life Testing
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 Reliability of CPTCs during life testing is comparable or better than 
for MnO2 parts. 

 Contrary to MnO2 caps that might fail short circuit, CPTCs are more 
likely to cause current spiking (not addressed by the existing S&Q).
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Specifics of CPTCs: Anomalous 
Transients
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 Preconditioning 
affects transient 
currents from 
milliseconds to hours.
 Behavior of CPTCs 
with moisture is 
similar to MnO2 caps.
 At RT dry CPTCs 
might have currents 
>103 times greater 
than humidified caps.
 Contrary to MnO2 
capacitors, leakage 
currents at low

temperatures in dry CPTCs might increase up to 106 times.



Effect of Vacuum
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 Anomalous 
transients appear 
with time in 
vacuum.
 Inverse 
temperature 
dependence of 
leakage currents.

 Short- and long-term transients might have different mechanisms.



Anomalies in AC Characteristics
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 Similar to MnO2 
caps, wet CPTCs 
have stable AC 
characteristics.
C, ESR, and DF 
are increasing with 
voltage in dry 
CPTCs.
 DF in CPTCs 
after drying can 
increase well above 
10% and then 
decrease gradually 
with time.



Anomalous Transients: Effect of Part 
Type
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 Different part types have substantially different levels of 
transient currents.

 Currently, no specific tests evaluate the level of transients.
 Modification of polymers can practically eliminate anomalies in 

behavior of CPTCs.



Conclusions and Future Work
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 To use CPTCs that are compliant with AEC-Q200 for space:
Designers should be aware of possible degradation and 

anomalies in the parts and determine acceptable levels.
The level of degradation, current spiking and anomalous 

transients is limited by adequate S&Q procedures.
Voltage derating should be 50% instead of 80% suggested by 

manufacturers.
 Future work on CPTCs:
 Kinetics of moisture sorption and desorption at different temperatures;
 Modeling of ESR degradation;
 Effect of long-term exposure to vacuum and HTS on current spiking and 

anomalous transients;
 Radiation hardness.
 Guidelines for applications and parts’ selection.
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